If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-30x^2-52x+20=0
a = -30; b = -52; c = +20;
Δ = b2-4ac
Δ = -522-4·(-30)·20
Δ = 5104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5104}=\sqrt{16*319}=\sqrt{16}*\sqrt{319}=4\sqrt{319}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-52)-4\sqrt{319}}{2*-30}=\frac{52-4\sqrt{319}}{-60} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-52)+4\sqrt{319}}{2*-30}=\frac{52+4\sqrt{319}}{-60} $
| 1/8x=6/7 | | 2,484=23(p+35) | | 5x^2+10x=20 | | 9)-8(-(x+4))=0 | | -7+7k=-7(1-1) | | x/x-7+3=7/x-7 | | 9)-8=-(x+4) | | 10m2-3m=2(2-3m) | | 10-3x=30-43x | | 6(4n+3)=27-5n | | -(-6+6x)=11-6x | | 5x+7+x=2(3x-4) | | 2(5-6z)=23 | | -1/3x+2=-7 | | (x^2-6x+14)(x^2-4x+4)=0 | | 18=2/5(x)-6 | | 4x-1=6x+9=2x+17 | | 4x-7+2x=(3x-3) | | -16-8m=-8(m+2) | | -x-7=3(2x+4) | | Y-5y=8+12Y | | x(3x-3)=(3x+2)(x-1) | | -34-6z=3(4z×2) | | 10x=500+75 | | 0=12t^2-35t-70 | | 3x-5(1/3x)=10 | | -25=-4+3(a+8) | | 0.3n-5=0.4-0.2(n-7) | | 8h-4+2=20 | | 2(3t-8-4t=10 | | 6x+412=12x+136 | | 20+1.25x=30+2.5x. |